Skip to content

API Reference

beta_kde.BetaKDE

Bases: DensityMixin, BaseEstimator

Beta Kernel Density Estimation with Scikit-learn API compatibility.

This estimator is designed for data strictly bounded within a fixed support (default [0, 1]). It addresses the Boundary Bias problem common in Gaussian KDEs by using Beta distributions as kernels.

Parameters:

Name Type Description Default
bandwidth float, str, or None

The bandwidth selection method for the MARGINALS. Options: float, 'beta-reference', 'LCV', 'LSCV'.

None
bounds tuple of float

The strict support of the data (min, max).

(0.0, 1.0)
bandwidth_bounds tuple of float

The search range (min_h, max_h) used when bandwidth is set to 'LCV' or 'LSCV'.

(0.01, 0.2)
selection_grid_points int

Points for LSCV grid search.

30
heuristic_factor float

Expansion factor for LSCV heuristic search.

4.0
integration_points int

Points used for numerical integration in LSCV.

200
copula_grid_size int

Resolution of the grid used for Copula transformation.

1000
verbose int

Verbosity level.

0
Source code in src/beta_kde/estimator.py
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
class BetaKDE(DensityMixin, BaseEstimator):
    r"""
    Beta Kernel Density Estimation with Scikit-learn API compatibility.

    This estimator is designed for data strictly bounded within a fixed support
    (default [0, 1]). It addresses the **Boundary Bias** problem common in
    Gaussian KDEs by using Beta distributions as kernels.

    Parameters
    ----------
    bandwidth : float, str, or None, default=None
        The bandwidth selection method for the MARGINALS.
        Options: float, 'beta-reference', 'LCV', 'LSCV'.

    bounds : tuple of float, default=(0.0, 1.0)
        The strict support of the data (min, max).

    bandwidth_bounds : tuple of float, default=(0.01, 0.2)
        The search range (min_h, max_h) used when `bandwidth` is set to 'LCV' or 'LSCV'.

    selection_grid_points : int, default=30
        Points for LSCV grid search.

    heuristic_factor : float, default=4.0
        Expansion factor for LSCV heuristic search.

    integration_points : int, default=200
        Points used for numerical integration in LSCV.

    copula_grid_size : int, default=1000
        Resolution of the grid used for Copula transformation.

    verbose : int, default=0
        Verbosity level.
    """

    VALID_SELECTION_METHODS = ["LCV", "LSCV", "beta-reference"]

    def __init__(
        self,
        bandwidth: Optional[Union[float, str]] = None,
        bounds: Tuple[float, float] = (0.0, 1.0),
        bandwidth_bounds: Tuple[float, float] = (0.01, 0.2),
        selection_grid_points: int = 30,
        heuristic_factor: float = 4.0,
        integration_points: int = 200,
        copula_grid_size: int = 1000,
        verbose: int = 0,
    ):
        self.bandwidth = bandwidth
        self.bounds = bounds
        self.bandwidth_bounds = bandwidth_bounds
        self.selection_grid_points = selection_grid_points
        self.heuristic_factor = heuristic_factor
        self.integration_points = integration_points
        self.copula_grid_size = copula_grid_size
        self.verbose = verbose

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.positive_only = self.bounds[0] >= 0
        tags.input_tags.one_d_array = False
        tags.input_tags.two_d_array = True
        tags.target_tags.required = False
        return tags

    def fit(self, X, y=None, compute_normalization: bool = False):
        """
        Fit the Beta Kernel Density model to the training data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.
        y : Ignored
        compute_normalization : bool, default=False
            If True, triggers the lazy calculation of the normalization constant
            immediately. Useful for performance benchmarking or if you know
            you will need normalized scores later.
        """
        # Reset attributes
        self.bandwidth_ = None
        self.is_fallback_ = None
        # Reset normalization constant to None (invalidating previous fit)
        self.normalization_constant_ = None

        X = check_array(X, ensure_2d=True, order="C", dtype=np.float64)

        self.n_samples_, self.n_features_ = X.shape
        self.training_data_ = X
        self.n_features_in_ = self.n_features_

        lower, upper = self.bounds
        if lower >= upper:
            raise ValueError(f"Bounds must be strictly increasing. Got {self.bounds}")

        if not np.all((X >= lower) & (X <= upper)):
            raise ValueError(
                f"All data points must be within the interval {self.bounds}. "
                f"Found range [{X.min():.3f}, {X.max():.3f}]."
            )

        if isinstance(self.bandwidth, (float, int)) and not isinstance(
            self.bandwidth, bool
        ):
            if self.bandwidth <= 0:
                raise ValueError("Bandwidth must be positive.")
        elif isinstance(self.bandwidth, str):
            if self.bandwidth not in self.VALID_SELECTION_METHODS:
                raise ValueError(
                    f"Unknown bandwidth selection method: '{self.bandwidth}'"
                )

        # Scale Data to [0, 1]
        self.scale_factor_ = upper - lower
        self.shift_ = lower

        X_scaled = (X - self.shift_) / self.scale_factor_
        self._epsilon = 1e-10
        self.data_clipped_ = np.clip(X_scaled, self._epsilon, 1.0 - self._epsilon)

        # Fit Marginals
        self.marginal_bandwidths_ = []
        fallback_statuses = []
        self.cdf_grids_ = []
        self.x_grids_ = []

        for d in range(self.n_features_):
            data_d = self.data_clipped_[:, d]

            if self.verbose > 0 and self.n_features_ > 1:
                print(f"Fitting Dimension {d+1}/{self.n_features_}...")

            h, is_fb = self._select_bandwidth_for_dim(data_d)
            self.marginal_bandwidths_.append(h)
            fallback_statuses.append(is_fb)

            if self.verbose > 0:
                if is_fb:
                    print(
                        f"  Dim {d+1}: MISE rule failed constraints. Using fallback: h = {h:.4f}"
                    )
                elif self.n_features_ > 1:
                    print(f"  Dim {d+1}: Bandwidth selected: h = {h:.4f}")

            # Pre-compute CDF for Copula transform
            if self.n_features_ > 1:
                grid = np.linspace(0, 1, self.copula_grid_size)
                log_pdf = self._score_samples_1d(grid, data_d, h)
                pdf = np.exp(log_pdf)
                cdf = np.cumsum(pdf)
                cdf = cdf / cdf[-1]  # Normalize
                self.x_grids_.append(grid)
                self.cdf_grids_.append(cdf)

        if self.n_features_ == 1:
            self.bandwidth_ = self.marginal_bandwidths_[0]
            self.is_fallback_ = fallback_statuses[0]
            if self.verbose > 0:
                if self.is_fallback_:
                    print(
                        f"MISE rule failed constraints. Using fallback: h = {self.bandwidth_:.4f}"
                    )
                else:
                    print(f"Bandwidth selected by MISE rule: h = {self.bandwidth_:.4f}")

        # Copula Bandwidth
        if self.n_features_ > 1:
            self.U_train_ = self._transform_to_uniform(self.data_clipped_)
            self.copula_bandwidth_ = self.n_samples_ ** (-1.0 / (self.n_features_ + 4))

            if self.verbose > 0:
                print(f"Copula Bandwidth (Scott's Rule): {self.copula_bandwidth_:.4f}")

        self.is_fitted_ = True

        # Trigger lazy computation if explicitly requested
        if compute_normalization:
            _ = self.normalization_constant

        return self

    @property
    def normalization_constant(self) -> float:
        """
        The normalization constant of the density.
        Computed lazily via numerical integration upon first access.
        """
        check_is_fitted(self)
        if self.normalization_constant_ is None:
            self.normalization_constant_ = self._compute_normalization_constant()
        return self.normalization_constant_

    def _normalization_integrand(self, x_val, h, data_d):
        """Integrand helper method."""
        if np.ndim(x_val) == 0:
            x_val = np.array([x_val])

        mask = (x_val > 0) & (x_val < 1)
        if not np.any(mask):
            return 0.0 if np.ndim(x_val) == 0 else np.zeros_like(x_val)

        x_valid = x_val[mask]
        k_mat = self._kernel_matrix(x_valid, data_d, h)

        res = np.zeros_like(x_val)
        res[mask] = np.mean(k_mat, axis=1)

        return res if res.size > 1 else res.item()

    def _compute_normalization_constant(self) -> float:
        """Internal worker to compute and cache the normalization constant."""
        marginal_constants = []
        for d in range(self.n_features_):
            h = self.marginal_bandwidths_[d]
            data_d = self.data_clipped_[:, d]
            integral, _ = scipy.integrate.quad(
                self._normalization_integrand,
                0,
                1,
                args=(h, data_d),
                epsabs=1e-4,
                limit=50,
            )
            marginal_constants.append(integral)
        return np.prod(marginal_constants)

    def score_samples(self, X, normalized: bool = False):
        """
        Compute the log-likelihood of each sample.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to score.
        normalized : bool, default=False
            If True, ensures the density integrates to 1.0. 
            This triggers numerical integration if not yet computed.
        """
        check_is_fitted(self)

        if np.ndim(X) == 0:
            X = np.array([[X]])
        X = check_array(X, ensure_2d=True, order="C", dtype=np.float64)

        if hasattr(self, "n_features_in_"):
            if X.shape[1] != self.n_features_in_:
                raise ValueError(
                    f"X has {X.shape[1]} features, but BetaKDE is expecting "
                    f"{self.n_features_in_} features as input."
                )
        elif X.shape[1] != self.n_features_:
            raise ValueError(
                f"Mismatch in dimensions. Model: {self.n_features_}, Data: {X.shape[1]}"
            )

        X_scaled = (X - self.shift_) / self.scale_factor_
        X_safe = np.clip(X_scaled, self._epsilon, 1.0 - self._epsilon)

        n_test = X.shape[0]
        log_density = np.zeros(n_test)

        # 1. Marginal Log-Likelihoods
        for d in range(self.n_features_):
            h = self.marginal_bandwidths_[d]
            train_d = self.data_clipped_[:, d]
            log_pdf_scaled = self._score_samples_1d(X_safe[:, d], train_d, h)
            log_pdf = log_pdf_scaled - np.log(self.scale_factor_)
            log_density += log_pdf

        # 2. Copula Log-Likelihood
        if self.n_features_ > 1:
            U_test = self._transform_to_uniform(X_safe)
            log_copula = self._score_copula(
                U_test, self.U_train_, self.copula_bandwidth_
            )
            log_density += log_copula

        # 3. Normalization (Lazy)
        if normalized:
            log_norm = np.log(self.normalization_constant)
            log_density -= log_norm

        return log_density

    def score(self, X, y=None):
        """
        Compute the total log-likelihood under the model.

        **Note:** This method explicitly forces `normalized=True` to ensure
        statistical validity when used in cross-validation (e.g., GridSearchCV).
        To get raw scores, use `score_samples(X, normalized=False).sum()`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to score.
        y : Ignored

        Returns
        -------
        score : float
            Total log-likelihood.
        """
        return np.sum(self.score_samples(X, normalized=True))

    def pdf(self, X, normalized: bool = False):
        """
        Convenience method returning the probability density (exp(score_samples)).
        """
        is_scalar = np.ndim(X) == 0
        if is_scalar:
            X_arg = np.array([[X]])
        elif np.ndim(X) == 1:
            X_arg = X.reshape(-1, 1)
        else:
            X_arg = X

        log_pdf = self.score_samples(X_arg, normalized=normalized)
        pdf_vals = np.exp(log_pdf)

        if is_scalar:
            return float(pdf_vals[0])
        return pdf_vals

    def plot(
        self,
        eval_points: np.ndarray = None,
        show_histogram: bool = True,
        bins: int = 20,
        normalized: bool = False,
        ax: Optional[Any] = None,
        label: Optional[str] = None,
        **kwargs: Any,
    ) -> Union[Any, Tuple[Any, Any]]:
        """
        Plots the estimated Marginal Probability Density Functions (PDFs).
        """
        import matplotlib.pyplot as plt

        check_is_fitted(self)
        lower, upper = self.bounds
        n_dims = self.n_features_

        if ax is None:
            if n_dims == 1:
                fig, ax = plt.subplots(figsize=(10, 6))
                axes_list = [ax]
            else:
                cols = int(np.ceil(np.sqrt(n_dims)))
                rows = int(np.ceil(n_dims / cols))
                fig, axs = plt.subplots(rows, cols, figsize=(5 * cols, 4 * rows))
                axes_list = axs.flatten()
        else:
            if n_dims == 1:
                try:
                    fig = ax.figure
                except AttributeError:
                    fig = None
                axes_list = [ax]
            else:
                if not isinstance(ax, (list, np.ndarray)):
                    warnings.warn(
                        "Multivariate plot requested but single axis provided. Plotting 1st dimension only."
                    )
                    axes_list = [ax]
                else:
                    axes_list = np.array(ax).flatten()
                    try:
                        fig = axes_list[0].figure
                    except AttributeError:
                        fig = None

        for d in range(len(axes_list)):
            if d >= n_dims:
                axes_list[d].axis("off")
                continue

            curr_ax = axes_list[d]
            data_d = self.training_data_[:, d]
            h = self.marginal_bandwidths_[d]

            if eval_points is None:
                x_plot = np.linspace(lower, upper, 1000)
            else:
                x_plot = eval_points

            x_scaled = (x_plot - self.shift_) / self.scale_factor_
            x_safe = np.clip(x_scaled, self._epsilon, 1.0 - self._epsilon)
            train_d = self.data_clipped_[:, d]

            log_pdf_scaled = self._score_samples_1d(x_safe, train_d, h)
            log_pdf = log_pdf_scaled - np.log(self.scale_factor_)
            pdf_vals = np.exp(log_pdf)

            # NOTE: For plotting, we use trapezoidal rule normalization.
            # This is robust for multivariate marginals where the total
            # normalization constant != marginal constant.
            if normalized:
                integral = np.trapezoid(pdf_vals, x_plot)
                if integral > 0:
                    pdf_vals /= integral

            if n_dims == 1:
                plot_label = f"Beta KDE (h={h:.3f})" if label is None else label
                curr_ax.set_title("Beta Kernel Density Estimation")
            else:
                plot_label = f"Dim {d+1} (h={h:.3f})" if label is None else label
                curr_ax.set_title(f"Dimension {d+1}")

            if normalized:
                plot_label += " [Norm]"

            curr_ax.plot(x_plot, pdf_vals, label=plot_label, **kwargs)

            if show_histogram:
                curr_ax.hist(
                    data_d,
                    bins=bins,
                    density=True,
                    alpha=0.5,
                    color="gray",
                    edgecolor="none",
                    range=(lower, upper),
                )

            curr_ax.set_xlim(lower, upper)
            curr_ax.set_ylim(bottom=0)
            curr_ax.legend()

        if fig is not None:
            plt.tight_layout()
            return fig, axes_list if n_dims > 1 else axes_list[0]
        return axes_list if n_dims > 1 else axes_list[0]

    def _select_bandwidth_for_dim(self, data_1d):
        method = self.bandwidth if self.bandwidth else "beta-reference"
        if isinstance(method, (float, int)):
            return float(method), False
        if method == "LCV":
            return self._select_bandwidth_lcv(data_1d, self.bandwidth_bounds), False
        elif method == "LSCV":
            return (
                self._select_bandwidth_lscv(
                    data_1d,
                    self.bandwidth_bounds,
                    self.selection_grid_points,
                    self.heuristic_factor,
                    self.integration_points,
                ),
                False,
            )
        elif method == "beta-reference":
            return self._select_bandwidth_beta_reference(data_1d)
        raise ValueError(f"Unknown method: {method}")

    def _score_samples_1d(self, x_eval, data_train, h):
        k_mat = self._kernel_matrix(x_eval, data_train, h)
        pdf_vals = np.mean(k_mat, axis=1)
        return np.log(pdf_vals + 1e-300)

    def _transform_to_uniform(self, X_scaled):
        U = np.zeros_like(X_scaled)
        for d in range(self.n_features_):
            U[:, d] = np.interp(X_scaled[:, d], self.x_grids_[d], self.cdf_grids_[d])
        return np.clip(U, 1e-5, 1 - 1e-5)

    def _score_copula(self, U_test, U_train, h):
        n_test = U_test.shape[0]
        n_train = U_train.shape[0]
        d_dims = U_test.shape[1]
        log_weights = np.zeros((n_test, n_train))
        for j in range(d_dims):
            k_mat_j = self._kernel_matrix(U_test[:, j], U_train[:, j], h)
            log_weights += np.log(k_mat_j + 1e-300)
        max_log = np.max(log_weights, axis=1)
        sum_exp = np.sum(np.exp(log_weights - max_log[:, None]), axis=1)
        log_copula = max_log + np.log(sum_exp + 1e-300) - np.log(n_train)
        return log_copula

    def _lcv_objective(self, bandwidth, data):
        if not (0 < bandwidth < 1):
            return np.inf
        n = len(data)
        K_mat = self._kernel_matrix(data, data, bandwidth)
        row_sums = K_mat.sum(axis=1)
        diag_elems = np.diag(K_mat)
        f_hat_loo = (row_sums - diag_elems) / (n - 1)
        f_hat_loo = np.maximum(f_hat_loo, 1e-10)
        return -np.sum(np.log(f_hat_loo))

    def _select_bandwidth_lcv(self, data, bounds):
        res = scipy.optimize.minimize_scalar(
            lambda h: self._lcv_objective(h, data), bounds=bounds, method="bounded"
        )
        if res.success:
            return float(res.x)
        raise RuntimeError("LCV failed")

    def _lscv_objective(self, bandwidth, data, integration_points):
        if not (0 < bandwidth < 1):
            return np.inf
        n = len(data)
        x_grid = np.linspace(1e-5, 1.0 - 1e-5, integration_points)
        K_grid = self._kernel_matrix(x_grid, data, bandwidth)
        pdf_grid = K_grid.mean(axis=1)
        term1 = scipy.integrate.trapezoid(pdf_grid**2, x_grid)
        K_data = self._kernel_matrix(data, data, bandwidth)
        term2 = (np.sum(K_data) - np.sum(np.diag(K_data))) * (-2 / (n * (n - 1)))
        return term1 + term2

    def _select_bandwidth_lscv(
        self, data, bounds, grid_points, heuristic_factor, integration_points
    ):
        std_dev = np.std(data, ddof=0)
        n = len(data)
        search_bounds = bounds
        if std_dev > 1e-8:
            h_rule = 0.9 * std_dev * (n ** (-0.2))
            search_bounds = (
                max(bounds[0], h_rule / heuristic_factor),
                min(bounds[1], h_rule * heuristic_factor),
            )
        h_grid = np.linspace(search_bounds[0], search_bounds[1], grid_points)
        scores = [self._lscv_objective(h, data, integration_points) for h in h_grid]
        best_h = h_grid[np.nanargmin(scores)]

        step = h_grid[1] - h_grid[0] if grid_points > 1 else 0.01
        refine_bounds = (max(bounds[0], best_h - step), min(bounds[1], best_h + step))

        res = scipy.optimize.minimize_scalar(
            lambda h: self._lscv_objective(h, data, integration_points),
            bounds=refine_bounds,
            method="bounded",
        )
        return float(res.x) if res.success else best_h

    def _select_bandwidth_beta_reference(self, data):
        X_filtered = data[(data > 0) & (data < 1)]
        h_final = 0.1
        is_fallback = False

        try:
            ahat, bhat = self._estimate_beta_params(X_filtered)
            if not (ahat > 1.5 and bhat > 1.5 and (ahat + bhat) > 3):
                raise ValueError("Parameters too small for MISE rule.")

            a, b, n = ahat, bhat, len(data)
            log_num = (
                np.log(2 * a + 2 * b - 5)
                + np.log(2 * a + 2 * b - 3)
                + sp.gammaln(2 * a + 2 * b - 6)
                + sp.gammaln(a)
                + sp.gammaln(b)
                + sp.gammaln(a - 0.5)
                + sp.gammaln(b - 0.5)
            )
            denom_term_1 = (a - 1) * (b - 1)
            denom_term_2 = 6 - 4 * b + a * (3 * b - 4)
            if denom_term_1 <= 0 or denom_term_2 <= 0:
                raise ValueError("Denominator factor non-positive.")
            log_denom = (
                np.log(denom_term_1)
                + np.log(denom_term_2)
                + sp.gammaln(2 * a - 3)
                + sp.gammaln(2 * b - 3)
                + sp.gammaln(a + b)
                + sp.gammaln(a + b - 1)
            )
            log_factor = np.log(2) + np.log(n) + 0.5 * np.log(np.pi)
            log_h = (2 / 5) * (log_num - log_denom - log_factor)
            h_final = np.exp(log_h)
            if not (0 < h_final < 1):
                raise ValueError("Calculated bandwidth outside (0, 1).")

        except (ValueError, RuntimeError) as e:
            if ("Sample variance is zero" in str(e) or "too large" in str(e)) and len(
                data
            ) > 1:
                raise e

            if not (hasattr(self, "ahat_") and hasattr(self, "bhat_")):
                try:
                    self._estimate_beta_params(X_filtered)
                except ValueError:
                    return 1.0 * (len(data) ** (-0.4)), True
            h_final = self._calculate_hybrid_fallback(self.ahat_, self.bhat_, len(data))
            is_fallback = True
            if self.verbose > 0:
                warnings.warn(f"MISE Rule failed: {e}. Using fallback.", RuntimeWarning)
        return h_final, is_fallback

    def _estimate_beta_params(self, X_filtered):
        if X_filtered.size == 0:
            raise ValueError("No data strictly within (0, 1).")
        mean_x = np.mean(X_filtered)
        var_x = np.var(X_filtered, ddof=0)

        if var_x == 0:
            raise ValueError("Sample variance is zero.")
        if var_x >= mean_x * (1 - mean_x):
            raise ValueError("Sample variance is too large for Beta parameters.")

        common = ((mean_x * (1 - mean_x)) / var_x) - 1
        a, b = mean_x * common, (1 - mean_x) * common
        if a <= 0 or b <= 0:
            raise ValueError(f"Estimated parameters not positive: a={a}, b={b}")
        self.ahat_, self.bhat_ = a, b
        return a, b

    def _calculate_hybrid_fallback(self, a, b, n):
        s = np.sqrt(self._variance(a, b))
        correction = 1 + abs(self._skewness(a, b)) + abs(self._kurtosis(a, b))
        return (s / correction) * (n ** (-0.4)) if s > 0 else 1e-5

    @staticmethod
    def _skewness(a, b):
        return (2 * (b - a) * np.sqrt(a + b + 1)) / ((a + b + 2) * np.sqrt(a * b))

    @staticmethod
    def _kurtosis(a, b):
        num = 6 * ((a - b) ** 2 * (a + b + 1) - a * b * (a + b + 2))
        den = a * b * (a + b + 2) * (a + b + 3)
        return num / den

    @staticmethod
    def _variance(a, b):
        return (a * b) / ((a + b) ** 2 * (a + b + 1))

    def _rho_vec(self, x_arr, bandwidth):
        h = bandwidth
        term2 = np.maximum(4 * h**4 + 6 * h**2 + 2.25 - x_arr**2 - x_arr / h, 0.0)
        return (2 * h**2 + 2.5) - np.sqrt(term2)

    def _kernel_matrix(self, x_eval, data_pts, bandwidth):
        n_eval = x_eval.shape[0]
        x_col = x_eval.reshape(n_eval, 1)
        h = bandwidth
        lower_thresh, upper_thresh = 2 * h, 1 - 2 * h
        alpha = x_col / h
        beta_p = (1 - x_col) / h
        alpha = np.where(x_col < lower_thresh, self._rho_vec(x_col, h), alpha)
        beta_p = np.where(x_col > upper_thresh, self._rho_vec(1 - x_col, h), beta_p)
        return beta_dist.pdf(data_pts[np.newaxis, :], alpha, beta_p)

normalization_constant property

The normalization constant of the density. Computed lazily via numerical integration upon first access.

fit(X, y=None, compute_normalization=False)

Fit the Beta Kernel Density model to the training data.

Parameters:

Name Type Description Default
X array-like of shape (n_samples, n_features)

Training data.

required
y Ignored
None
compute_normalization bool

If True, triggers the lazy calculation of the normalization constant immediately. Useful for performance benchmarking or if you know you will need normalized scores later.

False
Source code in src/beta_kde/estimator.py
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def fit(self, X, y=None, compute_normalization: bool = False):
    """
    Fit the Beta Kernel Density model to the training data.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Training data.
    y : Ignored
    compute_normalization : bool, default=False
        If True, triggers the lazy calculation of the normalization constant
        immediately. Useful for performance benchmarking or if you know
        you will need normalized scores later.
    """
    # Reset attributes
    self.bandwidth_ = None
    self.is_fallback_ = None
    # Reset normalization constant to None (invalidating previous fit)
    self.normalization_constant_ = None

    X = check_array(X, ensure_2d=True, order="C", dtype=np.float64)

    self.n_samples_, self.n_features_ = X.shape
    self.training_data_ = X
    self.n_features_in_ = self.n_features_

    lower, upper = self.bounds
    if lower >= upper:
        raise ValueError(f"Bounds must be strictly increasing. Got {self.bounds}")

    if not np.all((X >= lower) & (X <= upper)):
        raise ValueError(
            f"All data points must be within the interval {self.bounds}. "
            f"Found range [{X.min():.3f}, {X.max():.3f}]."
        )

    if isinstance(self.bandwidth, (float, int)) and not isinstance(
        self.bandwidth, bool
    ):
        if self.bandwidth <= 0:
            raise ValueError("Bandwidth must be positive.")
    elif isinstance(self.bandwidth, str):
        if self.bandwidth not in self.VALID_SELECTION_METHODS:
            raise ValueError(
                f"Unknown bandwidth selection method: '{self.bandwidth}'"
            )

    # Scale Data to [0, 1]
    self.scale_factor_ = upper - lower
    self.shift_ = lower

    X_scaled = (X - self.shift_) / self.scale_factor_
    self._epsilon = 1e-10
    self.data_clipped_ = np.clip(X_scaled, self._epsilon, 1.0 - self._epsilon)

    # Fit Marginals
    self.marginal_bandwidths_ = []
    fallback_statuses = []
    self.cdf_grids_ = []
    self.x_grids_ = []

    for d in range(self.n_features_):
        data_d = self.data_clipped_[:, d]

        if self.verbose > 0 and self.n_features_ > 1:
            print(f"Fitting Dimension {d+1}/{self.n_features_}...")

        h, is_fb = self._select_bandwidth_for_dim(data_d)
        self.marginal_bandwidths_.append(h)
        fallback_statuses.append(is_fb)

        if self.verbose > 0:
            if is_fb:
                print(
                    f"  Dim {d+1}: MISE rule failed constraints. Using fallback: h = {h:.4f}"
                )
            elif self.n_features_ > 1:
                print(f"  Dim {d+1}: Bandwidth selected: h = {h:.4f}")

        # Pre-compute CDF for Copula transform
        if self.n_features_ > 1:
            grid = np.linspace(0, 1, self.copula_grid_size)
            log_pdf = self._score_samples_1d(grid, data_d, h)
            pdf = np.exp(log_pdf)
            cdf = np.cumsum(pdf)
            cdf = cdf / cdf[-1]  # Normalize
            self.x_grids_.append(grid)
            self.cdf_grids_.append(cdf)

    if self.n_features_ == 1:
        self.bandwidth_ = self.marginal_bandwidths_[0]
        self.is_fallback_ = fallback_statuses[0]
        if self.verbose > 0:
            if self.is_fallback_:
                print(
                    f"MISE rule failed constraints. Using fallback: h = {self.bandwidth_:.4f}"
                )
            else:
                print(f"Bandwidth selected by MISE rule: h = {self.bandwidth_:.4f}")

    # Copula Bandwidth
    if self.n_features_ > 1:
        self.U_train_ = self._transform_to_uniform(self.data_clipped_)
        self.copula_bandwidth_ = self.n_samples_ ** (-1.0 / (self.n_features_ + 4))

        if self.verbose > 0:
            print(f"Copula Bandwidth (Scott's Rule): {self.copula_bandwidth_:.4f}")

    self.is_fitted_ = True

    # Trigger lazy computation if explicitly requested
    if compute_normalization:
        _ = self.normalization_constant

    return self

pdf(X, normalized=False)

Convenience method returning the probability density (exp(score_samples)).

Source code in src/beta_kde/estimator.py
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def pdf(self, X, normalized: bool = False):
    """
    Convenience method returning the probability density (exp(score_samples)).
    """
    is_scalar = np.ndim(X) == 0
    if is_scalar:
        X_arg = np.array([[X]])
    elif np.ndim(X) == 1:
        X_arg = X.reshape(-1, 1)
    else:
        X_arg = X

    log_pdf = self.score_samples(X_arg, normalized=normalized)
    pdf_vals = np.exp(log_pdf)

    if is_scalar:
        return float(pdf_vals[0])
    return pdf_vals

plot(eval_points=None, show_histogram=True, bins=20, normalized=False, ax=None, label=None, **kwargs)

Plots the estimated Marginal Probability Density Functions (PDFs).

Source code in src/beta_kde/estimator.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
def plot(
    self,
    eval_points: np.ndarray = None,
    show_histogram: bool = True,
    bins: int = 20,
    normalized: bool = False,
    ax: Optional[Any] = None,
    label: Optional[str] = None,
    **kwargs: Any,
) -> Union[Any, Tuple[Any, Any]]:
    """
    Plots the estimated Marginal Probability Density Functions (PDFs).
    """
    import matplotlib.pyplot as plt

    check_is_fitted(self)
    lower, upper = self.bounds
    n_dims = self.n_features_

    if ax is None:
        if n_dims == 1:
            fig, ax = plt.subplots(figsize=(10, 6))
            axes_list = [ax]
        else:
            cols = int(np.ceil(np.sqrt(n_dims)))
            rows = int(np.ceil(n_dims / cols))
            fig, axs = plt.subplots(rows, cols, figsize=(5 * cols, 4 * rows))
            axes_list = axs.flatten()
    else:
        if n_dims == 1:
            try:
                fig = ax.figure
            except AttributeError:
                fig = None
            axes_list = [ax]
        else:
            if not isinstance(ax, (list, np.ndarray)):
                warnings.warn(
                    "Multivariate plot requested but single axis provided. Plotting 1st dimension only."
                )
                axes_list = [ax]
            else:
                axes_list = np.array(ax).flatten()
                try:
                    fig = axes_list[0].figure
                except AttributeError:
                    fig = None

    for d in range(len(axes_list)):
        if d >= n_dims:
            axes_list[d].axis("off")
            continue

        curr_ax = axes_list[d]
        data_d = self.training_data_[:, d]
        h = self.marginal_bandwidths_[d]

        if eval_points is None:
            x_plot = np.linspace(lower, upper, 1000)
        else:
            x_plot = eval_points

        x_scaled = (x_plot - self.shift_) / self.scale_factor_
        x_safe = np.clip(x_scaled, self._epsilon, 1.0 - self._epsilon)
        train_d = self.data_clipped_[:, d]

        log_pdf_scaled = self._score_samples_1d(x_safe, train_d, h)
        log_pdf = log_pdf_scaled - np.log(self.scale_factor_)
        pdf_vals = np.exp(log_pdf)

        # NOTE: For plotting, we use trapezoidal rule normalization.
        # This is robust for multivariate marginals where the total
        # normalization constant != marginal constant.
        if normalized:
            integral = np.trapezoid(pdf_vals, x_plot)
            if integral > 0:
                pdf_vals /= integral

        if n_dims == 1:
            plot_label = f"Beta KDE (h={h:.3f})" if label is None else label
            curr_ax.set_title("Beta Kernel Density Estimation")
        else:
            plot_label = f"Dim {d+1} (h={h:.3f})" if label is None else label
            curr_ax.set_title(f"Dimension {d+1}")

        if normalized:
            plot_label += " [Norm]"

        curr_ax.plot(x_plot, pdf_vals, label=plot_label, **kwargs)

        if show_histogram:
            curr_ax.hist(
                data_d,
                bins=bins,
                density=True,
                alpha=0.5,
                color="gray",
                edgecolor="none",
                range=(lower, upper),
            )

        curr_ax.set_xlim(lower, upper)
        curr_ax.set_ylim(bottom=0)
        curr_ax.legend()

    if fig is not None:
        plt.tight_layout()
        return fig, axes_list if n_dims > 1 else axes_list[0]
    return axes_list if n_dims > 1 else axes_list[0]

score(X, y=None)

Compute the total log-likelihood under the model.

Note: This method explicitly forces normalized=True to ensure statistical validity when used in cross-validation (e.g., GridSearchCV). To get raw scores, use score_samples(X, normalized=False).sum().

Parameters:

Name Type Description Default
X array-like of shape (n_samples, n_features)

Data to score.

required
y Ignored
None

Returns:

Name Type Description
score float

Total log-likelihood.

Source code in src/beta_kde/estimator.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def score(self, X, y=None):
    """
    Compute the total log-likelihood under the model.

    **Note:** This method explicitly forces `normalized=True` to ensure
    statistical validity when used in cross-validation (e.g., GridSearchCV).
    To get raw scores, use `score_samples(X, normalized=False).sum()`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data to score.
    y : Ignored

    Returns
    -------
    score : float
        Total log-likelihood.
    """
    return np.sum(self.score_samples(X, normalized=True))

score_samples(X, normalized=False)

Compute the log-likelihood of each sample.

Parameters:

Name Type Description Default
X array-like of shape (n_samples, n_features)

Data to score.

required
normalized bool

If True, ensures the density integrates to 1.0. This triggers numerical integration if not yet computed.

False
Source code in src/beta_kde/estimator.py
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def score_samples(self, X, normalized: bool = False):
    """
    Compute the log-likelihood of each sample.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data to score.
    normalized : bool, default=False
        If True, ensures the density integrates to 1.0. 
        This triggers numerical integration if not yet computed.
    """
    check_is_fitted(self)

    if np.ndim(X) == 0:
        X = np.array([[X]])
    X = check_array(X, ensure_2d=True, order="C", dtype=np.float64)

    if hasattr(self, "n_features_in_"):
        if X.shape[1] != self.n_features_in_:
            raise ValueError(
                f"X has {X.shape[1]} features, but BetaKDE is expecting "
                f"{self.n_features_in_} features as input."
            )
    elif X.shape[1] != self.n_features_:
        raise ValueError(
            f"Mismatch in dimensions. Model: {self.n_features_}, Data: {X.shape[1]}"
        )

    X_scaled = (X - self.shift_) / self.scale_factor_
    X_safe = np.clip(X_scaled, self._epsilon, 1.0 - self._epsilon)

    n_test = X.shape[0]
    log_density = np.zeros(n_test)

    # 1. Marginal Log-Likelihoods
    for d in range(self.n_features_):
        h = self.marginal_bandwidths_[d]
        train_d = self.data_clipped_[:, d]
        log_pdf_scaled = self._score_samples_1d(X_safe[:, d], train_d, h)
        log_pdf = log_pdf_scaled - np.log(self.scale_factor_)
        log_density += log_pdf

    # 2. Copula Log-Likelihood
    if self.n_features_ > 1:
        U_test = self._transform_to_uniform(X_safe)
        log_copula = self._score_copula(
            U_test, self.U_train_, self.copula_bandwidth_
        )
        log_density += log_copula

    # 3. Normalization (Lazy)
    if normalized:
        log_norm = np.log(self.normalization_constant)
        log_density -= log_norm

    return log_density